A Modified Incremental Principal Component Analysis for On-Line Learning of Feature Space and Classifier
نویسندگان
چکیده
[Abstract] We have proposed a new concept for pattern classification systems in which feature selection and classifier learning are simultaneously carried out on-line. To realize this concept, Incremental Principal Component Analysis (IPCA) and Evolving Clustering Method (ECM) was effectively combined in the previous work. However, in order to construct a desirable feature space, a threshold value to determine the increase of a new feature is properly given in the original IPCA. To alleviate this problem, we can adopt the accumulation ratio as its criterion. However, in incremental situations, the accumulation ratio must be modified every time a new sample is given. Therefore, in order to use this ratio as a criterion, we also need to develop a one-pass update algorithm for this ratio. In this paper, we propose an improved algorithm of IPCA in which the accumulation ratio as well as the feature space can be updated on-line without all the past samples. To see if correct feature construction is carried out by this new IPCA algorithm, the recognition performance is evaluated for some standard datasets when Evolving Clustering Method (ECM) is adopted as a prototype learning method in Nearest Neighbor classifier.
منابع مشابه
A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملDynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملIncremental learning of feature space and classifier for face recognition
We have proposed a new approach to pattern recognition in which not only a classifier but also a feature space of input variables is learned incrementally. In this paper, an extended version of Incremental Principal Component Analysis (IPCA) and Resource Allocating Network with Long-Term Memory (RAN-LTM) are effectively combined to implement this idea. Since IPCA updates a feature space increme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004